Funkce

s využitím programu GeoGebra

Zadání:
Stanovte definiční obor funkcí:

  1. y= log(x2-x-6)
  2. y= 1-ln(x)
  3. y= ln(1-ln x)

Řešení:

  1. Chceme zjistit definiční obor funkce y= log(x2-x-6).
    Jak víme z definice a vlastností logaritmických funkcí, musí být x2-x-6 > 0.

    Úlohu vyřešíme např. rozložením na součin, x2-x-6 = (x-3)·(x+2).

    Vyřešíme nerovnici (x-3)·(x+2) > 0. Řešením jsou intervaly (-∞,-2) a (3,∞).

    D(f) = (-∞,-2) a (3,∞).
  2. Za úkol máme stanovit definiční obor funkce y= 1-ln(x).

    Opět vyjdeme z definice logaritmu, v tomto příkladu je definiční obor zřejmý ihned → x>0 → D(f)= (0,∞).
  3. Stanovení definičního oboru funkce y= ln(1-ln x) bude již trochu náročnější

    Jedná se o složenou funkci, proto musíme "prozkoumat" vnější i vnitřní funkci.

    Pro vnitřní funkci 1-ln x platí, že x>0. Poté zbývá ještě určit definiční obor funkce vnější ln(1-ln x) → 1-ln(x) > 0 → -ln(x) > -1 → ln(x) < 1 (dělíme -1, mění se nám nerovnost) → x<e (viz eulerovo číslo).

    Z těchto dvou podmínek již můžeme určit definiční obor funkce → D(f)(0,e).

Zpět na cvičné úlohy

        Autor: Václav Strnad, email: strnad10@seznam.cz
Poslední aktualizace: 24. 3. 2013

Valid XHTML | CSS